

Green roof substrate embodied energy and durability: A call for alternatives

Whitney Gaches, John Lea-Cox, Steve Cohan, Andrew Ristvey, Joe Sullivan, and Allen Davis.

University of Maryland

Outline

- Quick introduction to green roofs
- Current standards and requirements
 - FLL
 - ASTM
 - LEED
- Justification
- Methods
- Results
- Future Work

Green roof systems

- Green roofs are classified based on substrate depth
- Range of design intents

Image: tritonsystems.co.uk

Green Roof Classification

Intensive (cm)	Extensive (cm)	Reference
15-20	5-15	Kosareo and Ries (2007)
>50	N/A	Kohler et al. (2002)
15-35	3-14	Mentens et al. (2006)
>10	<10	Wong et al. (2007)
>30	N/A	Bengtsson et al. (2005)
>10	2-10	Graham and Kim (2005)

Source: Berndtsson, 2010

FLL Standards

- Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL)
- FLL is a German landscape industry green roof manual that has been adopted internationally

FLL Standards: Particle Size Distribution (PSD)

Granulometric Graph for Extensive Roofs

FLL Standards: Organic matter

- ≤ 65 g/L for extensive substrates
 - FLL, 2008

FLL-based interpretations

- 33% humus, 33% sand, 33% pumice
 - Volumetric? Gravimetric?
 - Canada Public Works Board, 2002
- 6-8% organic and 15-20% organic, different paragraphs
 - Sydney City Council Green Roof Resource Manual, 2010
- 4% or 6%, by construction
 - Loss on Ignition
 - City of Seattle, 2010

FLL Standards: Frost resistance

- 10.2.3 Frost Resistance (FLL, 2008)
 - "Must be insured by the manufacturer"
 - Based on components subjected to high levels of static and/or dynamic stress
 - No methodology or allowable particle loss is suggested

ASTM standards

- E2396: Saturated water permeability of granular drainage media
- E2397: Determination of dead and live loads
- E2398: Water capture and media retention of drain layers
- E2399: Maximum media density for dead load analysis
- E2400: Selection, installation, and maintenance of green rof plants

ASTM: ESCS specifications

 ASTM E-2788: Specification for use of ESCS as a mineral component in growing media and drainage layer of GR

LEED

- LEED points sometimes drive green roof implementation
 - Restore or protect habitat: 1 point
 - Stormwater quantity control: 1 point
 - Heat island effect (roof): 1 point
 - Rainwater management: 1 point
- If it looks good, it must be good!

Are Green Roofs Really Green?

- Expanded slate embodied energy ~ 0.44kg CO₂/kg
 - Hammond and Jones, 2008; Expanded Shale, Clay, and Slate Institute Information Sheet 6001
- 6 cm substrate at density of 1600kg/m³ has 5.76kg C/m²
- Total system embodied energy is 6.6kg C/m²
- 86% attributed to the substrate!
 - Getter et al., 2009

Green Roofs and Carbon

- Getter et al. (2009) quantified green roof carbon sequestration
 - Substrate: 100g C/m²
- 9 years to break even with system carbon cost, energy savings
 - Sailor, 2008
- 7 years to break even after quantifying sequestration.

Justification

Justification

Justification

Roof A, Installed 2009

Methods

 Obtain a sample direct from the substrate manufacturer and perform PSD analysis before and after 30 freeze/thaw cycles

Results: Before 30 cycles

Before 30 Freeze/Thaw Cycles

Results: After 30 cycles

After 30 Freeze/Thaw Cycles

Percent weight differences of standard heat-expanded mineral substrate in 8 different particle sizes after 30 freeze-thaw cycles.

Mature roof sampling

- Sample 3-7 year old green roofs in the Mid-Atlantic, representing the major commercially available substrate blends
- Determine particle size distribution

Roof B, Installed 2008

Roof C, Installed 2009

Roof D, Installed 2005

Roof E, Installed 2007

Discussion

- Standards are imposed at the time of or prior to installation
- 5 roofs represent 4 major commercially available substrates
- None met FLL granulometric guidelines 3-7 years post-installation
- Popular commercial media demonstrated particle fracturing after
 30 freeze/thaw cycles
- These materials are not durable and cost 0.44 kg CO₂/ kg media

Future Work

- Short term: Analyze 3 additional commercially available materials, straight from the manufacturer
- Long term: Develop a durable, locally-available green roof substrate that will maintain the desired characteristics for optimal plant growth.

Acknowledgements

- Maryland Department of Natural Resources
- Furbish Company
- Maryland Industrial Partnerships

Literature

ESCS Institute Informational Flyer 9153, January 2012

Hammond, G.P., C.I. Jones. 2008. Embodied energy and carbon in construction materials. Proc. Inst. Cir. Eng: Energy. 161(2):87-98

Getter, K.L., D.B. Rowe, C.P. Robertson, B.M. Cregg, and J.A. Andresen. Carbon sequestration potential of extensive green roofs. 2009. Evironmental Science and Technology 43:7564-7570

Sailor, D.J. A green roof model for building energy simulation programs. 2008. Energy and Buildings 40: 1466-1478

Questions?

